
AD-A244 296

NASA Contractor Report 189563

ICASE Report No. 91-80

ICASE
EFFECTS OF PARTITIONING AND SCHEDULING
SPARSE MATRIX FACTORIZATION ON
COMMUNICATION AND LOAD BALANCE

Sesh Venugopal
Vijay K. Naik

Approved fo " Pu~lia r tt < n ;

Contract No. NASI-18605 itiuv.,. -

October 1991

Institute for Computer Applications in Science and Engineering ,..r,,r i ('

NASA Langley Research Center .,,| I _
Hampton, Virginia 23665-5225 !, T F

Operated by the Universities Space Research Association SJA!4 199aU

Nationail Apronqtjtic; and
S pace Adminisratonn

L ngley Research Center 92-00665
H-rnpfn, Virqiniq 2 3f6 o2w5

92 1 095 7



Effects of Partitioning and Scheduling Sparse
Matrix Factorization on Communication and

Load Balance*

Sesh Venugopal
Dept. of Computer Science

Rutgers University
New Brunswick, NJ 08903

Vijay K. Naik
IBM

T. J. Watson Research Center
Yorktown Heights, NY 10598

Abstract

We present a block-based, automatic partitioning and scheduling method-
ology for sparse matrix factorization on distributed memory systems. Using
experimental results, we analyze this technique for communication and load
imbalance overhead. To study the performance effects, we compare these over-
heads with those obtained from a straightforward "wrap-mapped" column as-
signment scheme. All experimental results were obtained using test sparse
matrices from the Harwell-Boeing data set. The results show that there is a
communication and load balance trade-off. The block-based method results in
lower communication cost whereas the wrap-mapped scheme gives better load
balance.

*This re qearch was partially supported by the National Aeronautics and Space Administration
under NASA contract NAS1-18605 while the first author was in residence at ICASE, Mail Stop
132C, NASA Langley Research Center, Hampton, VA 23665.



1 Introduction

Partitioning and scheduling the parallel execution of large scientific applications on
distributed memory systems is a difficult and time consuming task. If the dependen-
cies involved are unstructured, as in the case of sparse linear systems, then the task
becomes even more complex. Use of naive techniques to extract parallelism often
results in large communication overhead and/or in large load imbalance. To reduce
communication overhead, locality of data must be exploited and to balance the load,
the computations must be evenly distributed at all times. When the data depen-
dencies are non-uniform and unstructured, achieving these two goals simultaneously
is difficult. As a result, in such cases, the overall performance may turn out to be
poor, even if an application has a high degree of extractable parallelism. One possible
way to minimize the overhead is to make use of the structure of the sparse system
which can usually be determined prior to performing the numerical computations.
When direct methods are used to solve the sparse systems, this information in the
form of the structure of the factored matrix is routinely used to reduce computation
and/or storage costs. Recently, this information has also been applied in extracting
parallelism while maintaining low communication and load imbalance costs [5], [6],
[14]. However, in most cases, parallelism has been extracted manually, which tends
to be extremely tedious, error prone, and inflexible. Thus, automation is the key to
successful parallelization of such applications. To summarize, there are two important
issues in the efficient parallelization of sparse matrix based computations:

* Developing technology for the automatic parallelization of the computations.

* Developing a methodology for the extraction of the available parallelism with
minimum communication and load imbalance costs.

To address these issues, we have developed an automatic, block-based scheme for par-

titioning and scheduling the computations in factoring a sparse matrix. The scheme
makes use of the structure of the factor and is targeted towards distributed memory
systems. To reduce communication, it takes advantage of locality. However, to main-
tain proper load balance and a high degree of parallelism, the scheme makes use of n "n r
an adaptive technique in distributing the computational work.

To demonstrate the usefulness of such a partitioning scheme and to bring out the .e1 0
performance limitations that are inherent in sparse matrix computations, we compare :t Ir
the communication overhead and the degree of load balance in the automated block-
based approach with that obtained from a straightforward and widely used column-
based approach. In the latter scheme, computations associated with an entire column
or row are assigned to a processor and the assignment of these columns or rows is !Itt Codes

usually done in a "wrap-around" fashion. We refer to this schiene as the wrap-7napping :1 /or

is codes
,/orI&



or wrap scheme. For comparing the performance on practical applications, we present
results for some of the Harwell-Boeing test matrices.

In the following discussion, it is assumed that the reader is familiar with the standard
terminology used in the context of sparse matrix computations. For an explanation,
see [7],[3].

The organization of the rest of the paper is as follows. In the next section, the
Cholesky factorization is briefly described and some of the terminology used in the
paper is introduced. The partitioning and scheduling strategies that are used for
automation are presented in Section 3. Performance results are described in Section 4
and Section 5 concludes the paper.

2 Cholesky factorization

The partitioning and scheduling methodology is described in this paper assuming
Cholesky factorization as the model numerical method of computation. The Cholesky
algorithm is simple, well understood, and is widely used. Note, however, that the
techniques presented here are applicable to other factoring methods as well. In the
following, we highlight only those aspects of this algorithm that are essential for
describing the partitioner. For details on the Cholesky factorization scheme, see [9].

For the sake of completeness, we first briefly describe the four steps involved in the
direct solution of Ax = b. (For details see, for example, [8].) It is assumed that A
is symmetric, positive definite and that Cholesky factorization is used in computing
the factor L, where A = LLT.

1. Ordering: Find a good ordering of the unknowns for elimination. The ordering
is given by a permutation matrix P. Most often, a "good" ordering implies
one which would lead to a sparse factor and fewer arithmetic operations in the
numerical factorization step.

2. Symbolic Factorization: Determine the sparsity structure of the factor L.

3. Numerical Factorization: Compute L.

4. Triangular Solutions: Using the computed L, solve the triangular systems Lu
Pb, L v = u and set x = pT.

The basic element-level data dependencies in the factorization process are shown in
Figure 1.

2



column
k

column
row Lk

rowJi€ L(ik) L(,j)

Figure 1: Inter-element dependencies in Cholesky factorization

In that figure, only the lower triangular part of the matrix to be factored is shown.
Li, denotes the element in row i and column j. The direction of the arrows indicates
the data flow. Thus, elements Lj,k and Li,k from column k of the factor L are required
in computing element Li,. Li, = Lij - Li,k * Lj,k is the corresponding operation in
the Cholesky factorization. (Initially Li,. is set to Ai,.) We refer to this operation as
a single update operation. Note that in computing the final value of Lij, it must be
updated by all pairs of non-zero elements Lj,k Pnd Li,k, 1 < k < j. Finally, after all
the updates are performed, the element is scaled by the square root of the diagonal
element in that column.

3 Partitioning and scheduling

The partitioning scheme presented here is static in the sense that all t] (. computations
are partitioned before any of the computations are scheduled for execution. For this,
the partitioner takes as an input the structure of the factor for the sparse matrix.
However, the scheme is general and does not have knowledge oi any matrix structure
embedded in it.

As stated in the introductory section, the aim of the partitioner and the scheduler
is to reduce communication and at the same tini, maintain a balanced work load
among processors at all times. To achieve this, wherever possible, data locality is
exploited. This leads to some variation of block-based partitioning; such partitioning
approaches have been proposed in several linear algebra related problems [2], [12].

3



With blocking, it is possible to achieve a high ratio of computation to communication
per block. In [11], it is shown that for an important class of problems, the block-based
partitioning schemes result in an optimal utilization of the data accessed (and thus
reduce data traffic). Blocking, however, could lead to load imbalance because the
increase in the sizt, of schedulable units results in a loss of flexibility in distributing
work among piocessors. To avoid this, the partitioner described here partitions the
factored matrix into blocks of varying sizes that can be assigned in an equitable
manner to the processors. It makes use of a heuristic where the block sizes are
subject to adaptive manipulation. In the following we describe the functioning of the
partitioner in some detail.

The partitioning starts with the zero-nonzero structure of the filled sparse matrix
obtained after the symbolic factorization phase has been completed. Blocks of non-
zero areas are identified in the filled matrix. We refer to these as dense blocks. Oi
occasions, blocks are formed by including small regions that correspond to zeros in
the factored matrix in order to obtain larger blocks. Inclusion of such areas with zero
elements is kept to a minimum. The work in these dense blocks is partitioned into
sub-blocks whicl, are the basic schedulable units. These unit blocks have a regular
shape - each unit block is either a column, a rectangle or a triangle. After all the unit
blocks are identified, the dependencies between these blocks are determined. Finally
the unit blocks are assigned and scheduled on processors.

Thus, the steps involved in the automatic partitioning and scheduling are:

e Identify dense blocks in the symbolic factor.

9 Partition each dense block into schedulable unit blocks.

* Generate and store dependency information for the unit blocks.

* Schedule these units on the processors of a message passing system.

* Consolidate the non-local memory access information for each processor so as
to minimize communication overhead.

In the remainder of this section, we will describe the first four steps.

3.1 Identification of dense blocks

To identify the dense blocks, first clusters of columns are determined in the sparse
triangular factor. A cluster is a either a column or a strip of consecutive columns.
If it is a strip, it contains a (lense triangular block at the top and (possibly) a set of
off-diagonal dense rectangular blocks. This is illustrated using an example shown in

4



Figure 2. In that figure, non-zero elements in the filled 41 x 41 matrix are indicated
by the dark areas. The matrix corresponds to a 5-point finite element 5 x 5 grid and is
ordered using Liu's multiple minimum degree algorithm [10]. It was generated using
the Sparse Matrix Manipulation System developed at the University of Wisconsin [1].

Ul

-U

Figure 2: A 41 x 41 filled matrix.

In Figure 2, note the following in the lower triangular part. Cluster 1 spans columns
1 and 2 and cluster 2 spans columns 3 and 4. Both clusters 1 and 2 have a three-
element deinse triangular block at the diagonal. Cluster 1 has three dense rectangles
below the triangle, each of which is 1 x 2, while cluster 2 has two dense rectangles, the
upper one being 1 x 2 and the lower one being 2 x 2. Clusters 3 through 12 are single
columns starting with cluster 3 at column 5. The last cluster consists of columns 35
through 41. This cluster has one dense triangle and no rectangles below it. Note that
in this illustration we do not consider column 34 as part of the last cluster because
of the zero in row 38 of this column. But this can be over-ridden by allowing some
zeros to be a part of a triangle.

Once the clusters and the triangular and rectangular blocks within each cluster are
identified, the algorithm processes the clusters left to right in the matrix. When a
cluster is processed, each block in the cluster is partitioned into sub-blocks which are
schedulable units. Next, for each unit, the dependencies are determined and stored.
These steps are explained below.

5



3.2 Partitioning of a block

A cluster with a single column is considered to be a schedulable unit and is not
subject to further partitioning. In a multi-column cluster, the triangular block is
partitioned first. In general, the number of partitions of a triangle are determined by
(a) the number of processors that are assigned to the blocks on which the triangle
depends, (b) a certain minimum work requirement per unit sub-block. The first pa-
rameter restricts communication to the group of processors that work on the triangle
and its predecessors. Tile second parameter is used to ensure a satisfactory ratio of
computation to communication for each unit block and is an architecture dependent
parameter. This parameter may be used to vary block sizes from one cluster to the
next. For the results presented here we use a fixed size - one for all the triangular
block and another for the rectangular blocks. This is referred to as the grain size and
is the minimum number of matrix elements required in each unit block. The grain
size dictates a maximum number of partitions, say Pd. A block is partitioned into at
most Pd equal sized units: at most because it may not always be possible to break up
a block into exactly Pd equal sized units.

L2 L313

r21 r22 r23

Figure 3: Partitions

Figure 3 illustrates this partitioning. The triangle is partitioned into six parts. One
of the rectangles is partitioned into four parts and the other is partitioned into three
parts.

6



3.3 Identification of dependencies

The dependencies in a single update operation at the element level of Cholesky fac-
torization are shown in Figure 1. However, for allocation and scheduling of the units,
it is necessary to identify the dependencies at the block level. In this step, for each
unit block, the dependencies are determined and the information on the actual data
needed in the update operation is stored. This step also identifies columns or block
units that are independent, i.e., those that are not updated by any other units. To
automate this process, it is necessary to classify the dependencies at the inter-block
level. We have classified these dependencies into ten categories which are enumerated
next. Using this classification and the interval tree structure, the partitioner computes
the dependencies efficiently. The implementation details are given elsewhere.

In the following discussion, a column is represented by its column number in the
matrix, a rectangle is represented by its column extent (ci, cj), ci < cj and row extent
(rp, rq), rp < rq, and a triangle is represented by its row extent (or column extent,
which is the same as the row extent) (ri,rj), ri < rj.

1. A column updates a column

This forms the base case for the dependencies. A column k updates a column
j if Lj,, is non-zero. (see Figure 1).

2. A column updates a triangle

Let triangle T's row extent be (rl, r 2). A column k, k < ri, updates the triangle
if Lik is non-zero, r, < i < r 2. In Figure 4(a), the non-zero elements of column
k that are involved in the update are in rows il, i 2 and i3. The points of
intersection of the dotted lines with each other and of the dotted lines with the
diagonal are the points of triangle T that are updated by column k.

3. A column updates a rectangle

Let rectangle R's column extent be (ci, c2 ) and row extent be (rl, r 2). A column
k updates this rectangle if it has pairs of non-zero elements Li,k and Lj,k, where
C1 5 i < C2 and ri _< j _< r2. In Figure 4(b), the non-zero elements in rows il
and i2 combine with the non-zero elements in rows Jj, j2 and j3 to update a
portion of R. This updated portion is the set of points given by the intersection
of the dotted lines in R's interior.

4. X triangle updates a rectangle

Let the column extent of rectangle R be (c1 , c2) and the column extent of triangle
T be (c3 , c4 ). The triangle updates the rectangle if there is an intersection in
their column extents. In Figure 4(c), the shaded portion of T updates the
shaded portion of R.

7



5. A triangle and a rectangle update a rectangle

Let rectangle R1 have column extent (c1, C2) and row extent (rl, r 2) and let
rectangle R 2 have column extent (c3, c4) and row extent (r 3 , r 4). Let c2 < C3.
Let the column extent of triangle T be (c5, c6 ). T combines with R1 to update
R 2 if (c1,C 2 ) intersects (c 5 , c), (C3 , c4 ) intersects (c5,c6) and (rl,r 2) intersects
(i-3,v 4). In Figure 4(d), the shaded rectangular portion of T combines with the
entire shaded rectangle R1 to update the entire shaded rectangle R 2.

6. A rectangle updates a column

Let the row extent of rectangle R be (r1 , r 2). It updates a column k if r, < k <
r 2 . In Figure 4(e), the shaded portion of the rectangle between rows k and r 2

update the column elements between rows k and r 2.

7. Two rectangles update a column

Let rectangle R have column extent (Ce, C2) and row extent (rl, 72) and let

rectangle R 2 have column extent (C3, C4) and row extent (r3 , r 4 ). Let r 2 < r3.

Then R1 combines with R 2 to update a column k if r, < k < r2 and (Cl, c2 )

intersects (c3 , c4). In Figure 4(f), the elements of R1 which are in the row k
between the vertical dotted lines combine with the entire shaded rectangle R 2

to update the elements between Tows T3 and T4 in column k.

8. A rectangle updates a triangle

Let the row extent of rectangle R 1 be (rl, r2 ) and the row extent of triangle T

be (r 3 , r4). The rectangle updates the triangle if (r1 , r 2) intersects (r3 , r 4). In

Figure 4(g), the shaded portion of R updates the shaded portion of T.

9. Two rectangles update a triangle

Let rectangle R have column extent (Cl, C2 ) and row extent (rl, r 2 ) and let

rectangle R 2 have column extent (C3 , c4) and row extent (ra, r 4). Let r 2 < r3 .

Let the row extent of triangle T be (r5 , r6 ). Then R1 combines with R 2 to
update T if (C1,C 2) intersects (c3,c 4) and (rl, r 2) intersects (r5 , r6) and (r 3, r 4 )

intersects (r 5,re). In Figure 4(h), the shaded portion of R combines with the

entire shaded rectangle R 2 to update the shaded rectangular portion of T.

10. Two rectangles update a rectangle

Let rectangle R, have column extent (C1 , c2) and row extent (rl, r 2 ), rectangle R2

have column extent (c3 , C4 ) and row extent (r3 , r4 ) and rectangle R 3 have column
extent (c5, c6) and row extent (r5 , r6). Let r2 < r3, r2 < r 5 and c4 < c5. Then R
combines with R 2 to update R3 if (ci, c2) intersects (c3 , c4 ) and (r3, r 4) intersects
(r5 , re) and (rl, r 2 ) intersects (cr, c6 ). In Figure 4(i), the shaded portion of R,
combines with the shaded portion of R 2 to update the shaded part of R 3 .

8



3.4 Scheduling

The scheduling process is split up into two parts: allocating unit blocks to processors
and ordering the computational work within each processor. In this paper, we are
concerned with the first part only and the salient points therein are presented next.

First the independent columns, as identified in the previous step, are allocated to
processors in a wrap-around fashion. The remaining clusters are scanned again from
left to right. If a cluster is a dependent column, the entire column is allocated to a
processor, which is arbitrarily picked from the set of processors which worked on the
column's predecessors. If the cluster is not a column, the unit blocks in the triangular
part are allocated to processors, followed by the unit blocks in each rectangular block,
going top to bottom. For example, in the cluster shown in Figure 3, the six sub-blocks
of the triangle would be allocated first, followed by the four sub-blocks of the rectangle
below it, finishing up with the three sub-blocks of the bottom-most rectangle.

Allocation within a triangle proceeds by first allocating the triangular units from
top to bottom, followed by the rectangular units, going top to bottom and left to
right. In the Figure 3 for instance, the sub-blocks in the triangle would be allocated
in the order tj, t3 , t6 , t2 , t 4 , t 5 . A global set of all processors, Pg, is maintained,
with a marker pointing to the first "available" processor. This marker cycles through
the global set in a round-robin fashion and is moved up every time a unit block is
allocated to the currently available processor. Apart from this, a set of processors, Pa,
which have been already allocated to some sub-block in the triangle is maintained.
Initially, P is empty. The strategy for allocating a processor to a unit rectangle or
unit triangle is the same. First, the predecessors of the unit block are scanned. For
each predecessor, if the processor p which worked on it is not in Pa, the unit block
is allocated to p and p is added to Pa. If all of the processors which worked on all
the predecessors of the unit block are already in P, the unit block is allc-ated to the
currently available processor in P and the marker is moved up to the next processor
in Pg.

For allocating the units within a rectangle below the triangle, the choice of processors
is restricted to Pt, where Pt is the set of processors to which the unit blocks in the
triangle are allocated. Since there is a large amount of communication between a tri-
angle and the rectangles below it, this strategy helps in reducing the communication.
First, the processors in set Pt are ordered according to increasing work. Going in

round-robin fashion through Pt, the processors are assigned to the unit blocks in the
rectangle, going top to bottom and left to right within the rectangle. For example,
let processors Pl, P2 and p3 be assigned to the unit blocks on the triangle in Figure 3.
Assume that the ordering according to work is such that pi < P2 < p3. Then, in
the first rectangle below the triangle, ril is allocated to pl, r1 2 is allocated to p2, r 13

is allocated to p3, r 14 is allocated to pl. The set Pt is sorted again and the above

9



strategy is used to allocate r 21 , 7'22 and 7 2 3.

4 Performance

In this section we present results on the performance of the above described partitioner
and scheduler, in terms of the quality of partitioning and allocation that it produces.
To quantify the results, we measure the communication overhead in terms of the total
data traffic generated and the load balance in terms of a Lctor that measures the
deviation from perfect load balance. We also compare the results with (hose using
the straightforward column wrap assignment scheme. For this purpose, we have
used some of the representative test matrices from the Harwell-Boeing package [4].
These test matrices were partitioned and the work units were scheduled as described
in the previous section. Using this output, simulations were carried out to get the
performance results presented here.

Application No. of No. of No. of Description
eqns. non-zeros non-zeros

in factor

DUS1138 1138 2596 3304 Symmetric structure of power
system networks

CANN1072 1072 6758 20512 Symmetric pattern from
Cannes, Lucien Marro

DWT512 512 2007 3786 Symmetric submarine frame
from Naval Ship Research
and Development Center

LAP30 900 4322 16697 Symmetric matrix representing
9-point discretization of the
Laplacian on the unit square w/
Dirichlet boundary conditions

LSHP1009 1009 3937 18268 Symmetric matrix from
Alan George's LSHAPE probs.

Table 1: Selected Harwell-Boeing Test Matrices

For all the results presented in this section, the test matrices were ordered using Liu's
modified multiple minimum degree ordering scheme [10]. We used some of the tools

10



from SPARSKIT [13] and the Wisconsin Sparse Matrix Manipulation System [1] for
converting the test matrices into various formats, and for ordering and symbolically
factoring the matrices. Table 1 describes the Harwell-Boeing test matrices which were
used in our experiments.

In the following, we first quantify the communication and work load distribution
aspects of the partitioning schemes. Note that here we are concerned with the quality
of the partitioner/scheduler in distributing the work among the processors and hence
do not take into account data dependency delays. In practice, the total execution may
be affected by the dependency delays as well. However, if the number of processors
is relatively small compared to the number of schedulable units, then the allocation
scheme described here provides enough parallelism to keep the idle time to a minimum.

The communication cost is parameterized by the total data traffic generated in the
system and the mean data traffic per processor. The data traffic is defined as a count
of all the non-local data accesses. Accessing a single non-local element constitutes a
unit data traffic irrespective of the iocation from where it is fetched. Once a data
element is fetched, that element is stored locally and subsequent usage of that element
in the local computations does not add to the data traffic. The total data traffic in
the system is the sum of the data accesses by all the processors in the system. This
figure represents the volume of the data that must be transmitted by the system
during the entire factorization step.

The work load distribution of a partitioning scheme is characterized as follows. The
computation cost of updating an element of the matrix by a pair of off-diagonal
elements is assumed to be two units; updating th element by the diagonal element is
assumed to cost one unit. The computational work assigned to a processor is the sum
of the computation costs of all the elements assigned to that processor. The quality
of the work load distribution for a partitioning scheme is measured in terms of the
load imbalance resulting from the assignment of the work to the processors. The load

imbalance factor is defined as,

A = (Wm ax- Wa.,e) * N
Wtot

where Wtot is the total work, N is the number of processors, W ,, = WtotIN is the
average work and Wm,: is the maximum work assigned to any processor. Note that
when the load is perfectly distributed, W,,,, is Wave and A is zero. The load imbalance
factor can be related to the efficiency e, which is the ratio of speedup to number of
processors, where speedup is the ratio of sequential time to parallel time. In the case
of zero idle times due to dependency delays, the parallel time is simply the amount
of computational work in the processor with the maximum work. The efficiency can
then be expressed as,

Wt0 t Wave

Wma* N Wmax

11



which gives us

A (Wma - Wv) * N W ax Wave 1
Wtot Wave e

Table 2 gives the communication traffic in the block scheme for two cases respectively:
when the grain size is 4 and when the grain size is 25.

Appl. P Total Mean
g=4 g=25 g=4 g=25

4 1335 1194 334 298
BUS 16 1818 1567 114 98

32 1910 1649 60 103

4 47545 40716 11886 10179
CANN 16 138453 80334 8653 5021

32 171965 89042 5374 2783

4 5336 3768 1334 942
DWT 16 10328 5482 645 342

32 11305 5950 353 185

4 38424 29382 9606 7346
LAP 16 100012 44738 6251 2796

32 113717 48863 3554 1527

4 42044 29899 10511 7475
LSHP 16 106973 57773 6686 3611

32 127612 60243 3988 1883

Table 2: Block mapping communication.

Recall that the grain size is the minimum number of elements in any triangular or
rectangular partition. In both cases, total communication increases with the number
of processors for all the test problems. However, when the grain size is increased from
4 to 25, there is a significant reduction in communication. For instance, in the LAP30
problem, the g = 4 and g = 25 columns for total communication in table 2 show that
there is more than 50% reduction in the total communication for p = 16 and p = 32.
This is due to the fact that as the block size increases, more work is done in each
block with a lot of re-use of data.

Table 3 describes the work distribution in the block scheme for grain sizes 4 and 25.
In contrast to the reduction in communication with higher grain size, in most cases,
there is an increase in load imbalance. Furthermore, the load imbalance factor A
increases, in general, with the number of processors, as well.

12



Overall, the larger the grain size, the smaller is the communication, at th cost of
larger load imbalance. If the application is run on a system with high communication
cost as compared to computation cost, the block-based partitioning can give good
performance i.e. the savings in communication will be more than offset the disad-
vantage of load imbalance. Also, the load balance can be improved by using more
sophisticated strategies to allocate blocks to processors.

Appl. Procs. Work Distribution
Mean A

g=4 g=25

4 2791 0.77 0.8
BUS 16 698 3.59 3.59

32 349 6.3 6.3

4 151460 0.07 0.122
CANN 16 37865 0.13 0.62

32 18932 0.38 1.26
4 11701 0.17 0.18

DWT 16 2925 1.14 1.37
32 1462 1.48 3.67
4 108644 0.12 0.16

LAP 16 27161 0.13 1.13
32 13581 0.48 2.9
4 125392 0.06 0.24

LSHP 16 31348 0.25 0.74

32 15674 0.24 2.04

Table 3: Block mapping work distribution.

Apart from grain size, another parameter used in the tests was the minimum cluster
width. For instance, if the minimum cluster width is 4, no strip of columns less than
four columns wide is acceptable as a cluster - it is broken up into individual columns.
The larger the minimum width acceptable, the fewer number of non-single-column
clusters there are. For any problem, if the cluster width is set high enough, we end
up with all single columns. The results of table 2 and table 3 were obtained using a
minimum cluster width of four.

Table 4 shows the variation of communication and load distribution with minimum
cluster width for LAP30. The table shows an increase in communication when the
width goes from 2 to 4 and then a decrease when the width goes to 8. Load imbalance
shows a complementary behavior. It decreases when the width goes from 2 from 4
and then increases when the width goes from 4 to 8. The cluster width has to go in
step with the grain size. If the cluster width is too small compared to the grain size,

13



a large number of skinny clusters would be formed towards the left of the matrix.
The blocks would not have enough matrix elements to take advantage of reduction ill
communication offered by the large grain size.

Width P Communication Work Distr.
Total Mean Mean A

4 38936 9734 108644 0.03
2 16 96235 6015 27161 0.167

32 111519 3485 13580 0.54

4 38424 9606 108644 0.12
4 16 100012 6251 27161 0.13

32 113717 3554 13580 0.48
4 32569 8142 108644 0.62

8 16 88408 5526 27161 1.35
32 101725 3179 13580 2.3

Table 4: Variation with width for LAP30, g = 4.

Table 5 presents the results for the wrap-mapping case. The immediately noticeable
property is the consistently uniform load distribution, as seen by the A column. How-
ever, a smaller grain size in the block scheme gives a two-fold advantage of decrease
in communication without too much load imbalance as compared to wrap-mapping.
For instance, consider the CANN1072 problem with 32 processors. For a grain size
of four, the block case provides a 28% saving in communication in going from wrap
mapping to the block scheme while the load imbalance factor goes from 0.14 to 0.38,
whereas when the grain size is 25, the savings in communication over wrap-mapping
is 63% while the load imbalance factor goes from 0.14 to 1.26.

5 Conclusions

In this paper, we have described a block based, automatic partitioning and scheduling

scheme for factoring sparse matrices on message passing systems. The primary focus
is towards automating the process so that the tedious task of manual parallelization
is kept to a minimum. The partitioner makes use of data locality to reduce communi-
cation overhead and at the same time attempts to provide the necessary flexibility to
the scheduler in manipulating the work allocation so that the load remains balanced.
We have used the example of Cholesky factorization to describe the methodology.
However, it can very easily be adapted to other factoring methods used in sparse
matrix computations. In fact, it can be generalized to computations that can be

14



Appl. P Communication Work Distr.

Total Mean Mean A
1 0 0 11164 0

BUS 4 2485 621 2791 0.02
16 3705 231 698 0.12
32 3832 120 349 0.35
1 0 0 605840 0

CANN 4 52363 13090 151460 0.01
16 171764 10735 37865 0.05

32 239646 7489 18932 0.14

1 0 0 46804 0
DWT 4 7599 1900 11701 0.02

16 17867 1117 2925 0.26
32 20990 656 1462 0.32

1 0 0 434577 0
LAP 4 42663 10665 108644 0.01

16 133720 8357 27161 0.06
32 177625 5551 13580 0.11

1 0 0 501570 0
LSHP 4 46347 11586 125392 0.01

16 146322 9145 31348 0.09
32 192977 6031 15674 0.24

Table 5: Wrap mapping.

15



represented as directed acyclic graphs with sufficient information prior to performing
the computations.

To analyze the effects on the performance of the partitioning and scheduling tech-
nique used, we have compared the communication overhead in the form of total data
traffic with that obtained from an implementation where a straightforward column
wrap scheme is used. Five representative test matrices from the Harwell-Boeing pack-
age were used for this purpose. The comparison shows that the block-based scheme
results in a significant reduction in the communication overhead as compared to the
wrap-mapping scheme. This is in agreement with our motivation for blocking. On the
other hand, the block method results in more load imbalance. Wrap-mappings usu-
ally lead to processors communicating with a large number of other processors leading
to a large amount of data traffic and possibly to hot-spots. However, in block-based
schemes, most of the communication among blocks occur within a cluster and hence
can mostly be confined to small groups of processors. Although the increased load
imbalance is a serious issue, the provision of the parameters such as the grain size and
the cluster widths allows one to minimize the load imbalance for particular applica-
tions. Further study of the structure of the sparse matrices is required to optimize
these parameters for individual applications. Moreover, in real applications factoring
is only a part of the overall solution of the system and other computations such as
triangular solves can provide additional flexibility in the balancing the load which is
not taken into account here. Finally, more sophisticated scheduling strategies could
be used to improve performance. Thus, for systems such as message passing archi-
tectures, where communication overhead is much more expensive than computation,
automated, block-based methods such as the one dcscribed here may prove to be
better alternatives.

Acknowledgements

We would like to thank Bob Voigt and Joel Saltz at ICASE for reading the report
carefully and making suggestions to improve its presentation.

References

[1] F. L. Alvarado, The Sparse Matrix Manipulation System Users Manual. Tech-
nical Report, University of Wisconsin, Madison, 1990.

[2] E. Anderson and Y. Saad, Solving Sparse Triangular Linear Systems on Parallel
Computers. CSRD Report No. 794, Center for Supercomputing Development,
University of Illinois, 1988.

16



[3] I. S. Duff, A. M. Erisman, and J. K. Reid, Direct Methods for Sparse Matrices.
Oxford Science Publications, Clarendon Press, 1986.

[4] I. S. Duff, R. Grimes, and J. Lewis, Sparse Matrix Test Problems. ACM Trans-
actions on Mathematical Software, Vol. 15, No. 1, pp. 1-14, 1989.

[5] G. Fcx, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker, Solving
Problems on Concurrent Processors: Vol. 1 - General Techniques and Regular
Problems. Prentice Hall, 1988.

[6] G. A. Geist and E. Ng, Task Scheduling for Parallel Sparse Cholesky Factoriza-
tion. Int. Journal of Parallel Programming, Vol. 18, pp. 291-314, 1989.

[7] A. George and J. W. Liu, Computer Solution of Large Sparse Positive Definite
Systems. Prentice-Hall, 1981.

[8] A. George, M. Heath, J. W. Liu, and E. Ng, Solution of Sparse Positive Definite
Systems on a Hypercube. Journal of Computational and Applied Math., Vol. 27,
pp. 129-156, 1989.

[9] G. H. Golub and C. F. Van Loan, Matrix Computations. The Johns Hopkins
University Press, 1983.

[10] J. W. H. Liu, Modification of Minimum Degree by Multiple Elimination. ACM
Transactions on Mathematical Software, Vol. 11, 1985, pp. 141-153.

[11] V. Naik and M. Patrick, Data Traffic Reduction Schemes for Cholesky Fac-
torization on Asynchronous Multiprocessor Systems. Proceedings of the 1989
International Conference on Supercomputing, ACM, Crete, Greece, 1989. Also
available as IBM Research Report RC 14500, 1989.

[12] R. Schreiber and J. J. Dongarra, Automatic Blocking of Nested Loops. Technical
Report CS-90-108, Computer Science Department, University of Tennessee, 1990.

[13] Y. Saad, SPARSKIT: a Basic Tool Kit for Sparse Matrix Computations. Tech-
nical Report 90-20, RIACS, NASA Ames Research Center, 1990.

[14] P. Sadayappan and S. K. Rao, Communication Reduction for Distributed Sparse
Matrix Factorization on a Processor Mesh. Proceedings of Superconputing'89.
pp. 371-379, 1989.

17



k\ 
k 

\c

U c 4

ftT 

c4.-

ci c2 l c

(a) (b)(C

0R

ci cIc c~2

\2777777 r2
T '~R2

Tlc 0c )C3 o4c56

((i)

Fiue4Repnece

rl TS \W18



Form Approvpd

REPORT DOCUMENTATION PAGE 1 OMB or 0704-0188

R,01 0.1r ;S Or, - ,o -I:M I srornrI.C, .lsr .-.. I I.e , -, on orse 'f.drng the tine for ret~ewnq 'nstr,Crorns, searchr~n e.At,ng data wOurtel
l,1a t- I r t, -t nn' 1' 1 needed -d Oreotrr non,,n., I ~ i ebon of ni-mation Send comments rgarong th,sbrden e'trnate or an- thor a ecl ot ths

nol ecto r' n"-a.on n.o,n ruqqestnn or ,guqnq ,lto -drd.'n t- -;c- I, ton "eaoouarer$ Ser ,ce n retoraie fo, nform uton O ~erato nds And eporv I i I esle" son
Da.., -;-'a., S.Oe !2C4 -',..tcm, A 22202 4302 and to tnt M M~rjn r And , Idge Patp-rcr Reaotton Projest (0t04 01 a$) Wahnte DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

October 1991 Contractor Report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

EFFECTS OF PARTITIONING AND SCHEDULING SPARSE MATRIX

FACTORIZATION ON COMMUNICATION AND LOAD BALANCE NASI-18605

505-90-52-01
6. AUTHOR(S)

Sesh Venugopal
Vijay K. Naik

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Institute for Computer Applications in Science 
REPORT NUMBER

and Engineering ICASE Report No. 91-80

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23665-5225

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING

National Aeronautics and Space Administration 
AGENCY REPORT NUMBER

Langley Research Center NASA CR-189563
Hampton, VA 23665-5225 ICASE Report No. 91-80

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Michael F. Card To appear in Proceedings of
Final Report Supercomputing 1991.

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited

Subject Category 61

13. ABSTRACT (Maimum 200 words)

We present a block-based, automatic partitioning and scheduling methodology for

sparse matrix factorization on distributed memory systems. Using experimental re-

sults, we analyze this technique for communication and load imbalance overhead.

To study the performance effects, we compare these overheads with those obtained

from a straightforward "wrap-mapped" column assignment scheme. All experimental

results were obtained using test sparse matrices from the Harwell-Boeing data set.

The results show that there is a communication and load balance trade-off. The

block-based method results in lower communication cost whereas the wrap-mapped

scheme gives better load balance.

_.. 14 SUBJECT TERMS "'k 15. NUMBER OF PAGES

load balancing; sparse matrices; partitioning; communication. 20
S16. PRICE CODEA03

17. SECURITY CLASSIFICATION 18 SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified I I
%S,% '540.0'280 5500 Standard Form 298 IRev 2-89)

Pr-,red tv ANSI S-d 39 le

NASALAW1CV. 1991


